Составить уравнение множественной линейной регрессии y = a + b1x1 + b2x2 + ε в матричной форме, используя МНК, и найти числовые характеристики переменных.
Найти оценки параметров а, b1, b2, б².
Найти коэффициент детерминации и оценить уравнение регрессивной связи.
Построить корреляционную матрицу и оценить статистическую зависимость между переменными.
По данным, полученным от фермерских хозяйств одного из регионов, изучается зависимость объёма выпуска продукции растениеводства Y (млн руб.) от двух факторов: численности работников Х1 (чел.) и количества осадков в период вегетации Х2 (мм).
№ п/п Y Х1 Х2
1 0.9 54 5
2 1.3 62 7
3 2.4 80 13
4 2.6 83 11
5 3.2 98 18
Представим данные в матричной форме:
Y=0,91,32,42,63,2; X=15451627180131831119818; B=ab1b2; e=e1e2e3e4e5
В матричной форме система нормальных уравнения для модели множественной регрессии имеет вид:
Тогда .
Рассчитаем
11111546280839857131118∙15451627180131831119818=537754377296534421544421688
11111546280839857131118∙0,91,32,42,63,2=10,4850,6131.
Матрицу определим по формуле , где – определитель матрицы ; – матрица, присоединенная к матрице
Получим
A-1=26,2174-0,63222,0047-0,63220,0160-0,05352,0047-0,05350,1879.
Теперь умножим эту матрицу на вектор
10,4850,6131
Получим B=26,2174-0,63222,0047-0,63220,0160-0,05352,0047-0,05350,1879∙10,4850,6131=-2,47590,0668-0,0444.
e=e1e2e3e4e5=-0,0084-0,05390,11050,0213-0,0696
2.Найдем оценки параметров а, b1, b2, б².
Исходя из матрицы В=-2,47590,0668-0,0444 значения параметров а=-2,4759,
b1=0,0668; b2=-0,0444.
Уравнение множественной регрессии имеет вид:
.
3.Найдем коэффициент детерминации и оценим уравнение регрессивной связи.
Для удобства вычислений составим вспомогательную таблицу.
№ х12
х2 2
у2
1 0.9 54 5 0.9084 1.3924 1.373 0.000 2916 25 0.81
2 1.3 62 7 1.3539 0.6084 0.527 0.003 3844 49 1.69
3 2.4 80 13 2.2895 0.1024 0.044 0.012 6400 169 5.76
4 2.6 83 11 2.5787 0.2704 0.249 0.000 6889 121 6.76
5 3.2 98 18 3.2696 1.2544 1.415 0.005 9604 324 10.24
SYMBOL 83f “symbol” * MERGEFORMAT 10.4 377 54 10.4 3.628 3.608 0.020 29653 688 25.26
Ср.знач. 2.08 75.4 10.8 5930.6 137.6 5.052
Рассчитаем коэффициент детерминации:
Коэффициент детерминации свидетельствует о том, что вариация исследуемой зависимой переменной на 99,4% объясняется изменчивостью включенных в модель объясняющих переменных , .
Рассчитаем скорректированный коэффициент детерминации:
Оба коэффициента детерминации свидетельствуют о сильной связи между факторными переменными и результативным показателем.
Проверим статистическую значимость на основе критерия Фишера по формуле:
Фактическое значение критерия F меньше табличного , определенного на уровне значимости при и степенях свободы, т.е. уравнение регрессии статистически незначимо, следовательно, исследуемая зависимая переменная Y плохо описывается включенными в регрессионную модель переменными.
4.Построим корреляционную матрицу и оценим статистическую зависимость между переменными.
Рассчитаем стандартизированные коэффициенты регрессии , коэффициенты эластичности , и -коэффициенты.
Коэффициент эластичности рассчитывается по формуле
;.
Это означает, что увеличение переменной на 1% (от своего среднего значения) приводит в среднем к росту величины на 2,422%, увеличение переменной на 1% (от своего среднего значения) приводит в среднем к уменьшению величины на 0,230%.
Стандартизированный коэффициент регрессии рассчитывается по формуле
,
где
,.
Стандартизированный коэффициент регрессии показывает, на сколько величин изменится в среднем зависимая переменная при увеличении только j-ой объясняющей переменной на .
Таким образом, увеличение только на одно увеличивает в среднем зависимую величину Y на 1,228; увеличение только на одно уменьшает в среднем зависимую величину Y на 0,239.
Рассчитаем -коэффициенты:
,
где – коэффициент парной корреляции.
Найдем матрицу коэффициентов парной корреляции.
Тогда
это означает, что на 123,0% приращение величины Y можно объяснить влиянием изменения фактора ,
это означает, что на 23,0% приращение величины Y можно объяснить влиянием изменения фактора .
…
user969511 5.0
Два высших образования (менеджмент в информационных технологиях, автоматизация технологических процессов).+аспирант философского факультета и лингвистики. Стаж: больше 5 лет работы над рефератами,докладами,решениями тех,лингв и эконом задач
Готовые работы на продажу
Гарантия на работу 10 дней.
Составить уравнение множественной линейной регрессии y = a + b1x1 + b2x2 + ε в матричной форме
- Контрольная работа
- Эконометрика
- Выполнил: vladmozdok
Составить уравнение множественной линейной регрессии y=a+b1x1+b2x2+ε в матричной форме
- Контрольная работа
- Эконометрика
- Выполнил: vladmozdok
На странице представлен фрагмент
Уникализируй или напиши новое задание с помощью нейросети
Похожие работы
Руководитель Комитета по земельным ресурсам представил на рассмотрение главе администрации N-ского муниципального района предложения относительно мест
Руководитель Комитета по земельным ресурсам представил на рассмотрение главе администрации N-ского муниципального района предложения относительно местоположения земельных участков, которые следует...
Токсичные элементы как загрязняющие вещества пищевых продуктов предельно допустимые концентрации в пищевых продуктах
Токсичные элементы как загрязняющие вещества пищевых продуктов, предельно допустимые концентрации в пищевых продуктах Часть выполненной работыВ результате воздействия загрязненной окружающей среды, а...