Фирма производит два широко популярных безалкогольных напитка – «Лимонад» и «Тоник». Фирма может продать всю продукцию, которая будет произведена. Однако объем производства ограничен количеством основного ингредиента и производственной мощностью имеющегося оборудования. Для производства 1 л «Лимонада» требуется 0,02 час работы оборудования, а для производства 1 л «Тоника» – 0,04 ч. Расход специального ингредиента составляет 0,01 кг и 0,04 кг на 1 л «Лимонада» и «Тоника» соответственно. Ежедневно в распоряжении Фирмы имеется 24 ч времени работы оборудования и 16 кг специального ингредиента. Прибыль фирмы составляет 0,1 ден. ед. за 1 л «Лимонада» и 0,3 ден. ед. за 1 л «Тоника». Сколько продукции каждого вида следует производит ежедневно, если цель фирмы состоит в максимизации ежедневной работы?
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на минимум и почему?
Решение
Введем следующие обозначения:
х1 – количество первого напитка «Лимонад»
х2 – количество второго напитка «Тоник»
Цена 1 л «Лимонада» таким образом составляет 0,1 х1 (ден. ед.), а цена 1 л «Тоника» составляет 0,3 х2 (ден. ед.). Т.к. нам необходимо максимизировать прибыль, получаем целевую функцию:
max f(х1,х2) = 0,1 х1 + 0,3 х2.
Ограничения задачи имеют вид:
0,02х1 + 0,04 х2 <Object: word/embeddings/oleObject1.bin> 24;
0,01х1 + 0,04 х2 <Object: word/embeddings/oleObject2.bin> 16;
х1,2 <Object: word/embeddings/oleObject3.bin> 0.
Построим прямые, соответствующие ограничениям задачи: первая прямая имеет вид 0,02х1 + 0,04 х2 = 24, решением ее служат точки (1200;0) и (0;600); вторая прямая имеет вид 0,01х1 + 0,04 х2 = 16, решением ее служат точки (1600;0) и (0;400).
Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью допустимых решений.
Рис. 1 Область допустимых решений
На рисунке 1 серым цветом обозначена область допустимых значений. Для определения движения к оптимуму построим вектор-градиент. При максимизации функции движемся в направлении вектора-градиента.
Решая систему уравнений
0,02х1 + 0,04 х2 = 24;
0,01х1 + 0,04 х2 = 16.
Находим, что х1 = 800, х2 = 200.
max f(х1,х2) = 0,1 800 + 0,3 200 = 140 (ден. ед.)
Ответ: Прибыль будет максимальной, если производить 800 л. «Лимонада» и 200 л. «Тоника» ежедневно (х1 = 800, х2 = 200), что обеспечит получение прибыли 140 ден. ед. Если задачу решать на min, то f(min)= ∞, т.е. не имеет конечного оптимума, т.к. область допустимых значений не ограничена снизу.
annayou 5.0
Обучалась в аспирантуре. Работала в различных компаниях, что позволило мне приобрести обширный опыт в маркетинге. Поэтому мои работы сильны практической частью и имеют реальную прикладную ценность.Опыт в написании научных работ - 7 лет.
Готовые работы на продажу
Гарантия на работу 10 дней.
Методы оптимальных решений(Экспертные методы принятия решений Фирма производит два широко популярных безалкогольных напитка – «Лимонад» и «Тоник».)
- Контрольная работа
- Экономика
- Выполнил: levaleva
Конкурентные позиции различных марок безалкогольных напитков: кока-кола, спрайт, фанта - пепси, 7 up, меринда.
- Курсовая работа
- Маркетинг
- Выполнил: EkaterinaKonstantinovna
На странице представлен фрагмент
Уникализируй или напиши новое задание с помощью нейросети
Похожие работы
№ 6 В ходе операции проведенной сотрудниками уголовного розыска летом 1935 г
№ 6 В ходе операции, проведенной сотрудниками уголовного розыска летом 1935 г. на Ярославском рынке г. Москвы, была задержана группа кустарей. У них была изъята мануфактура, костюмы и другие изделия,...
Постановления Пленума ВАС РФ № 17 от 14 03 2014 о том что разъяснения
Постановления Пленума ВАС РФ № 17 от 14.03.2014, о том, что разъяснения, содержащиеся в п. 9 настоящего Постановления, подлежат применению к отношениям, возникшим из договоров сублизинга, заключенных после...