69) Определить площадь треугольника, образованного прямой
с осями координат.
Решение:
1) Находим точки пересечения прямой с осями:
х = 0,
у = 0,
2) Имеем прямоугольный треугольник с катетами 12 и 9
S =
Ответ: 54 кв. ед.
73) Прямая отсекает на осях координат равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 кв. ед.
Решение:
Уравнение прямой имеет вид:
; a = 4; -4
a = -4 не подходит по условию задачи
Ответ:
74) Составить уравнение прямой, проходящей через начало координат и точку
A (-2;-3).
Решение:
Пусть уравнение прямой.
Прямая проходит через начало координат, поэтому с = 0.
Так что
Так как прямая проходит через (-2; -3), то ,
то есть
Уравнение примет вид :
То есть,
Ответ:
109) Точки А (1;2) и С(3;6) являются противоположными вершинами квадрата.
Определить координаты двух других вершин квадрата.
Решение:
Обозначим буквами B и D искомые вершины: B() и D().
Надо найти числа и . Для определения каждой пары этих чисел необходимы два уравнения, связывающие их.
Первое из них найдем, определив расстояние AB и приравняв его к расстоянию BC (AB = BC, так как стороны квадрата равны между собой):
,
Отсюда следует, что
=
Возводя обе части этого равенства в квадрат, после упрощений получим первое уравнение, связывающее ,
Затем составим систему уравнений:
Затем,
Коэффициенты уравнения:
a=5, b=−40, c=75
Вычислим дискриминант:
D==(−40)2−4·5·75=1600−1500=100
(D>0), следовательно, это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
;
Находим :
Ответ: B (0;5) и D (4;3)
110) На оси абсцисс найти точку, расстояние которой до прямой 8х+15у+10=0 равняется 1.
Решение:
Рассчитываем по формуле расстояние от точки до прямой.
Именно, пусть d(x1,y1) – расстояние от точки с координатами (x1,y1) до прямой Ax+By+C=0, тогда:
Решая это уравнение, получим два решения:
и
Ответ:
123) Показать, что треугольник с вершинами А (1;1) B(2+1) C(3;1) равносторонний, и вычислить его площадь.
Решение:
Равносторонний (правильный) треугольник – это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).
Площадь равностороннего треугольника вычисляется по формуле :
1. Находим длины сторон треугольника:
= =2
= =2
= =2
Так как , то треугольник является равносторонним.
2) Вычислим площадь треугольника:
=
Ответ: Площадь треугольника равна кв. ед.
191) Установить, какие кривые определяются нижеследующими уравнениями.
Построить чертежи.
Решение:
1) Находим коэффициенты:
2) Находим ортогональные инварианты :
==20+0+0-(0+0+16) =4
==4
Из этого следует, что уравнение задает мнимый эллипс, так как:
192) Установить, какие кривые определяются нижеследующими уравнениями.
Построить чертежи.
Решение:
1) Находим коэффициенты:
2) Находим ортогональные инварианты :
1-1=0
==-10+0+0-(-9+0+0)=-10+9=-1
== -1-0= -1
Таким образом, уравнение задает гиперболу, так как
3) Приводим уравнение в квадратичную форму:
B=
Вид квадратичной формы:
Разделим все выражение на -1
-1(-3)
Данное уравнение определяет гиперболу с центром в точке:
C (3; 0)
и полуосями:
a = 1 (мнимая полуось); b = 1 (действительная полуось).
Ответ:
; C (3; 0)
194) Установить, какие кривые определяются нижеследующими уравнениями.
Построить чертежи.
Решение:
1) Находим коэффициенты:
2) Находим ортогональные инварианты :
1-0=1
==0
== 0
Так как , то нужно найти дополнительно ортогональный семиинвариант κ:
=
Так как , то уравнение задает пару параллельных прямых.
3) Найдем корни уравнения:
x1 = 6 – √42·1 = 6 – 22 = 42 = 2
x2 = 6 + √42·1 = 6 + 22 = 82 = 4
Ответ: Пара параллельных прямых,
195) Установить, какие кривые определяются нижеследующими уравнениями.
Построить чертежи.
Решение:
1) Находим коэффициенты:
2) Находим ортогональные инварианты :
1+0=1
==0
== 0
3) Так как , то нужно найти дополнительно ортогональный семиинвариант κ:
=4+0=4
Так как то уравнение задает пару мнимых параллельных прямых.
Ответ: мнимые прямые
LadyRevolution06 4.4
Первое образование - Менеджмент, профиль "Управленческий и финансовый учет" Второе образование - Экономика, профиль "Внешнеэкономическая деятельность"
На странице представлен фрагмент
Уникализируй или напиши новое задание с помощью нейросети
Похожие работы
№ 6 В ходе операции проведенной сотрудниками уголовного розыска летом 1935 г
№ 6 В ходе операции, проведенной сотрудниками уголовного розыска летом 1935 г. на Ярославском рынке г. Москвы, была задержана группа кустарей. У них была изъята мануфактура, костюмы и другие изделия,...
Постановления Пленума ВАС РФ № 17 от 14 03 2014 о том что разъяснения
Постановления Пленума ВАС РФ № 17 от 14.03.2014, о том, что разъяснения, содержащиеся в п. 9 настоящего Постановления, подлежат применению к отношениям, возникшим из договоров сублизинга, заключенных после...